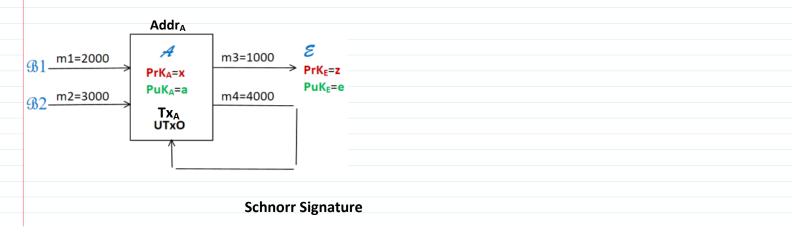
In 2024.11 Donal Trump declared America to be a Bitcoin country. Possibly inspired by Elon Musk.

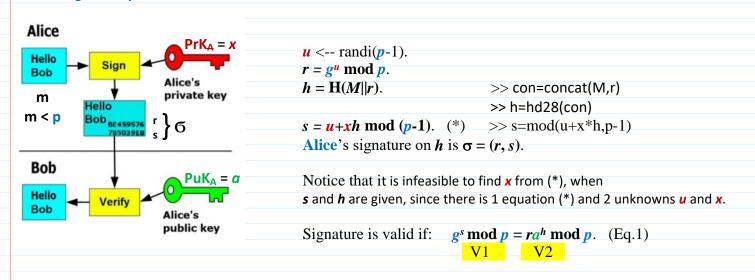
Anonymity in Blockchain

Let Alice opened her Bitcoin account with Bitcoin Address by generating her private key PrK=x and public key PuK=a. We assume that PuK=a are linked to Alice Aaddress in Bitcoin.

In Bitcoin and other Blockchains the Address is computed as a function of user's public key: Addr_A = F(PuK) and consist of several dozens of decimal numbers.


Cryptocurrency transaction

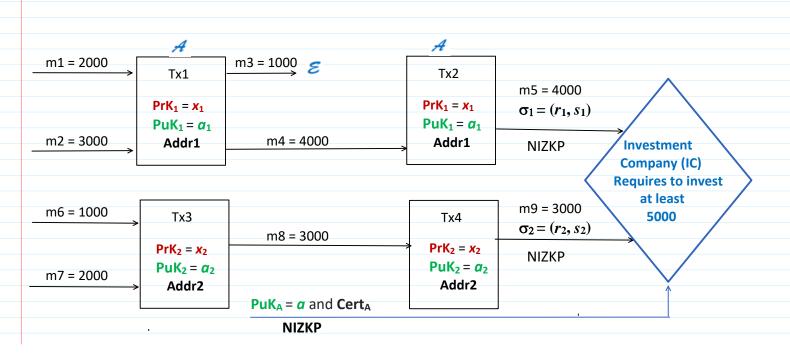
No.	Pajamos-Incomes	Išlaidos-Expenses	Likutis-Balance
In1.	Client1: 1000 Sat		1000 Sat
In2.	Client2: 2000 Sat	Out1. Firm 5: 1700 Sat	1300 Sat
In3.	Client3: 3000 Sat	Out2.t Firm 6: 2300 Sa	2000 Sat
In4.	Client4: 4000 Sat	Out3. Firm 7:	6000 Sat
Total	10 000 Sat	4000 Sat	6000 Sat


$J_{n1} = 1000$	Transaction - Tx	
	\cdot	$E_{X}I = 1700$
Jn2 = 2000	i h i h a at	Ex2 = 2300
Jn3 = 3000	Unspent Transaction	
$J_{\rm h}4 = 4000$	Iransaction	
	Output UTXO	$E_{X3} = 6000$
	0120	

Transaction (Tx) information in simplified form consist of the following information:

- 1. The address of Tx creator.
- 2. The sums of Incomes and addresses of senders.
- 3. The sums of Expenses and addresses of receivers.

In the case of Schnorr cryptosystem our simulation is performed with Public Parameters: PP = (p, g); p=268435019; g=2; p=int64(268435019)By having PP private key PrK and public key PuK are generated: PrK = x <-- randi(p-1) $PuK = a = a^{x} \mod p$.


But Alice do not want that all her incomes belonging to her Address were known and therefore and she prefers to be anonymous to the Net.

Then she creates a set of Addresses by generating a set of private keys {**PrK**_i = **x**_i} and a set of public keys {**PuK**_i = **a**_i}, where *i*=1, 2, ..., N.

But! There are the situations when Alice must prove some subjects that she possesses some amount of money distributed among a lot of her accounts and transactions with different addresses.

For example, she could pretend to tax concessions - mokesčiu lengvatos (according to the law) and she must prove to certain Investment Company that she possesses sufficient amount of money.

In this case she must prove that she controls some accounts with this sufficient amount of money for investment. In this case Alice can prove that her transactions are authentic (i.e. are created by her) by proving that PuK=a belongs to her, e.g. using Certificate issued by Certificate Authority for PuK=a, but at the same time she remains **anonymous** for other part of the Net.

$$\frac{\text{Schorr-Multi-Signature}}{\text{Deanonymization in BlockChain}}$$
Group of signers (665) must sign on different transactions.
Let the 665 is: {5; 5: }.
All members of GoS have their private and public keys:
5;
PrK_r=x, PuK_r=x;
PrK_r=x; PuK_r=x;
PuK_r=x; PuK_r=x; PuK_r=x;
PuK_r=x; PuK_r=x; PuK_r=x;
PuK_r=x; PuK_r=x; PuK_r=x; PuK_r=x;
PuK_r=x; P

If verification passes then IC transfers the interest on investments to Alice account. The material regarding NIZKP is included in schemes and explanation is presented below.

Additional material: of Non-Interactive Zero Knowledge Proof (**NIZKP**).

The technique presented above has an essential flaw.

The anyone having $PrK_{Im} = x_{Im}$ and public key $PuK_{Im} = a_{Im}$ can impersonate the actual Addr1 and Addr2 holder and redirect the interest on investments to his/her account by creating new Addr_{Im} = F(PuK_{Im}) by obtaining the certificate Cert_{Im} on PuK_{Im}.

Then Impersonator having Tx2 and Tx4 data together with $PuK_1 = a_1$ and $PuK_2 = a_2$ can sign Tx2 and Tx4 with his/her PrK_{Im} by computing $\sigma_{Im} = (r_{Im}, s_{Im})$.

Then Impersonator sends ($\sigma_{Im} = (r_{Im}, s_{Im})$, $PuK_{Im} = a_{Im}$, $Cert_{Im}$ and $Addr_{Im}$) as actual Addr1 and Addr2 holder Alice did.

After IC verification the Impersonator is waiting when IC transfers the interest on investments to his/her account represented by Addr_{Im}.

The solution of this problem is the realization of Non-Interactive Zero Knowledge Proof (**NIZKP**) by Alice proving that she knows her generated $PrK_1 = x_1$ and $PrK_2 = x_2$.

The **NIZKP** is as an additional operation is included in the schemes above. The details of **NIZKP** realization is left as an exercise.

Anonymity and authenticity simulation

>> p=int64(268435019)	>> x=int64(randi(p-1))	>> x1=int64(randi(p-1))	>> x2=int64(randi(p-1))
p = 268435019	x = 257726155	x1 = 156758073	x2 = 93240757
>> g=2;	>> a=mod_exp(g,x,p)	>> a1=mod_exp(g,x1,p)	>> a2=mod_exp(g,x2,p)
	a = 32920391	a1 = 15617773	a2 = 92735335
	>> AddrA=hd28('32920391')	>> Addr1=hd28('15617773')	>> Addr2=hd28('92735335')
	AddrA = 126423499	Addr1 = 32691790	Addr2 = 186632019

Tx2='In21=4000 Ex21=4000 Addr1'	Tx4='In41=3000 Ex41=3000 Addr1'
>> u1=int64(randi(p-1))	>> u2=int64(randi(p-1))
u1 = 50037375	$\mu^2 = 190308111$
>> r1=mod_exp(g,u1,p)	>> r2=mod_exp(g,u2,p)
r1 = 32904517	r2 = 22463608
>> con=concat(Tx2,r1)	>> con=concat(Tx4,r2)
con = ln21=4000 Ex21=4000 Addr132904517	con = In41=3000 Ex41=3000 Addr122463608
>> h1=hd28(con)	>> h2=hd28(con)
h1 = 64943318	h2 = 26322703
>> s1=mod(u1+x1*h1,p-1)	>> s2=mod(u2+x2*h2,p-1)
s1 = 234649183	s2 = 61742096

>> R12=mod(r1*r2,p)	>> a1_h1=mod_exp(a1,h1,p)	>> R12ma1_h1=mod(R12*a1_h1,p)
R12 = 92919544	a1_h1 = 168145239	R12ma1_h1 = 241090947
>> S12=mod(s1+s2,p-1)	>> a2_h2=mod_exp(a2,h2,p)	>> R12ma1_h1ma2_h2=mod(R12ma1_h1*a2_h2,p)
S12 = 27956261	a2_h2 = 55254133	R12ma1_h1ma2_h2 = <mark>91640974 = 91640974 = V2</mark>
>> g_S12=mod_exp(g,S12,p)	_	

	Schnorr-Multi-Signature is va	alid since V1 = V2 = 91640974			
		Decomposition against	10		
		Deanonymization against			
	<pre>> con1-concot(o1 Addr1)</pre>		$\sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} \right)$		
	> con1=concat(a1,Addr1) con1 = 1561777332691790		>> u=int64(randi(p-1)) u = 218160208		
	>> con2=concat(a2,Addr2)				
	- · · · ·		>> r=mod_exp(g,u,p) r = 76047239		
con2 = 92735335186632019					
	>> con12=concat(con1,con2) con12 = 1561777332691790927	25225186622010	conHHr = 15047739676047239	% H' r % HH== H '	
	>> HH=hd28(con12)	55555160052019	>> h=hd28(conHHr)	% ⊓⊓− −⊓	
	HH = 150477396		h = 114895503		
	111 - 130477390		>> s=mod(u+x*h,p-1)		
			s = 107897009		
	$g^s \mod p = ra^h \mod p$. (Eq.1))	3 - 107897009		
	V1 V2	,			
	r = r = r = r = r	$\sum_{n=1}^{\infty} b_{n} = m a d_{n} a u n (a b n)$			
	> g_s=mod_exp(g,s,p) g_s = 18634187	>> a_h=mod_exp(a,h,p) a_h = 202702734			
	<pre>s_s = 18034187 >> V1=g_s</pre>	>> V2=mod(r*a_h,p)			
	V1 = 18634187	V2 = 18634187			
	VI - 18034187	V2 - 18034187			
		T 10 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			
		Till this place			

g_S12 = **91640974 = V1**